Research Journal of Biotechnology

Review Paper:

Vol. 20 (7) July (2025)
Res. J. Biotech.

Chemical elicitors and their impact on secondary

metabolite production in Streptomyces

Madhuri Mukindrao Moon and John Godwin Christopher*
School of BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, Tamil Nadu, INDIA
*godwinj@vit.ac.in

Abstract

Streptomyces are typically known for their varieties of
secondary metabolites, many of which hold significant
pharmaceuticals. However, a major share of their
biosynthetic capacity remains hidden because
secondary metabolite-biosynthetic gene clusters are
often silent under standard cultivation conditions. To
switch on these cryptic genes, there is a need for such
signaling molecules as physiological or environmental
stress. These numerous signals, signal transduction
proteins and transcription factors form an elaborate
regulatory network. This triggers various responses,
chief among them being the activation of secondary
metabolism.

In this review, we present evidence of how chemical
elicitors can induce the expression of such cryptic
genes. These cryptic genes can be activated with a
better understanding of the genome sequencing,
leading to novel drug discovery. Elicitors increase the
synthesis of secondary metabolite compounds by signal
transduction mechanisms and impact the growth and
other cellular activities in Streptomyces such as
carbohydrate and lipid metabolism protein production
and gene activity. This underlined the importance of
elicitor approaches and signaling-based strategies in
developing and advancing secondary metabolite
research and development.

Keywords: Streptomyces sp., Cryptic genes, Secondary
metabolites, Signalling pathways.

Introduction

Secondary metabolites are a broad category of naturally
occurring compounds that have been found to exhibit a wide
range of biological properties such as antibacterial,
anticancer, anthelminthic, antidiabetics, anticholesterol and
other immunomodulatory effects'®. Since these compounds
are frequently synthesized in response to various
environmental stressors, such as nutrient depletion or
exposure to other microorganisms or chemicals, they serve
as crucial lead targets in the field of drug research?!.

These compounds are the source of around 80% of
anticancer agents and about 50% of all FDA-approved
pharmaceuticals®. In fact, over the last 25 years, more than
half of all anti-infective and anti-cancer chemicals have been
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derived from natural products with Actinomycetes being
major contributors®. Actinomycetes are the source of two-
thirds of all known antibiotics, with Streptomyces being the
most common®!. Streptomyces sp. is a desirable target for
this approach due to its well-known ability to produce a wide
range of bioactive secondary metabolites®®,

The history of natural product discovery can be divided into
three separate stages, the first 30 years (the 1940s-1970s) of
phenotypic screening, the second 30 years (1970s-2000s) of
knowledge-based approaches and the last 20 years (since the
2000s) of genomics-based approaches®’. The discovery and
characterization of secondary metabolites in microbial
systems now rely heavily on genomic-based methods and the
cryptic genes involved in the biosynthesis of secondary
metabolites that can be identified using genomic-based
methods®’.

Overall, it has the potential to create new methods for
boosting yields or creating novel analogs with higher
bioactivity by fusing these genomic-based approaches with
established fermentation procedures and analytical
methods*’. Current investigations on antibiotic cryptic gene
activation or enhancement in Streptomyces primarily focus
on elicitors that boost gene cluster expression®..

Elicitors are molecules or substances that encourage the
synthesis of secondary metabolites in microbes, plants and
other living things'®.  Elicitors function by turning on
particular cryptic genes involved in pathways for the
biosynthesis of secondary metabolites’®. Generally, at a
given time not all the genes are active, only a few are
functional or active. Most of them are silent or inactive, but
various stimuli can activate them and stimuli can be
chemical molecules such as DMSO, ethanol, scandium etc.
called elicitors®. Elicitors can be categorized as either biotic
or abiotic; Streptomyces frequently cohabit with other
microbes in a variety of habitats during biotic elicitation?
allowing for contact-dependent activation of cryptic gene
clusters that may result in the creation of novel secondary
metabolites and chemical defense mechanisms?3.

Recent research has also investigated abiotic elicitation
methods, including chemical, physical and molecular
methods as efficient ways to activate silent gene clusters®,
On the other hand, abiotic elicitors are non-living chemical
compounds or physical factors such as metal ions, salts,
changes in temperature, dark and light, or UV radiation that
can also stimulate secondary metabolites production of
Streptomyces.
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In this review study, we focused on chemical elicitors. These
are often preferred over other elicitors because they can be
easily available, can be purified and can be standardized for
large-scale fermentation processes?. It can also tend to have
more defined mechanisms of action compared to elicitors
derived from living organisms or environmental factors.
Exposure to particular chemical elicitors that work at
transcriptional and translational regulation and expression of
previously dormant genes, can be used to activate cryptic
biosynthetic gene clusters (Figure 1)°6.

The binding of these elicitors to regulatory pathways,
including transcription factors, is the mechanism
underpinning this occurrence which results in the creation of
natural products. New natural compounds with therapeutic
promise against a variety of infectious disorders brought on
by pathogenic bacteria, have been found using this method
with effectiveness. The emphasis of this review is on the
chemical elicitor and the different techniques used for the
expression of cryptic genes.

Cryptic genes and elicitors: Cryptic genes are DNA
seguences that do not usually express themselves during the
life cycle of an organism and remain phenotypically silent,
but via genetic processes such as recombination, insertion,
or mutation, they might be made active in a tiny number of
creatures?.

Even so, such sequences might still act as regulators of gene
expression or be transcribed into RNA molecules. Despite
their importance, cryptic genes frequently lack recognizable
features like promoter elements and open reading frames, so
it might be challenging to identify them?2. Therefore,
discovering cryptic genes necessitates complex genomic
methods like transcriptomics and bioinformatics analysis.
To harness the potential of cryptic genes, researchers often
employ chemical elicitors to trigger the expression of cryptic
gene clusters by testing several compounds to induce
secondary metabolite production.
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Secondary metabolites that arise from cryptic genes usually
have pharmacological properties that make them useful for
pharmaceuticals and biotechnology. Scientists discovered
the best conditions for activating cryptic metabolic pathways
and increasing metabolite production by testing different
chemical triggers. Chemical-based strategies have proven
useful for activating cryptic biosynthetic genes in
Streptomyces under controlled laboratory conditions, with
promising results observed during research studies.
Chemical elicitors are thought to be widely useful for
increasing secondary metabolite production and potentiating
the outputs of cryptic secondary metabolites in
Streptomyces.

Target and expression of cryptic genes by chemical
elicitor: Several techniques have been developed by
reawakening cryptic gene clusters including co-cultivation,
epigenetic modification, metabolic stimulation and
CRISPR/Cas9 genome editing®’. These techniques allow for
the induction of novel compounds under varied laboratory
settings by using a variety of chemical elicitors including
DMSO, ethanol, scandium (Sc3+), scandium and
lanthanum, sodium butyrate, dimethyl sulphone, antibiotic
remodelin' complex (ARC) etc.

In our review, we provide an in-depth analysis of elicitor
DMSO, ethanol and scandium, as recent studies have
demonstrated their efficacy in enhancing the production of
secondary metabolites.

Elicitors specifically encourage a gene's overexpression and
this activation may occur for a gene that is silent or has low
expression. The active defensive mechanisms influence the
elicitation response including which are activated and how
powerfully they are stimulated. A complete list of chemical
elicitors that have been demonstrated to activate cryptic
genes and stimulate secondary metabolism in Streptomyces
is presented in table 1.
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Fig. 1: Elicitor signal transduction leading to secondary metabolite synthesis
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Table 1
List of chemical elicitors used in different species of streptomyces and the product
S.N. Elicitor Streptomyces Cryptic gene Product
S. venezuelae ATCC 10712 cml Chloramphenicol
S. glaucescens tcmA and fcmR Tetracenomycin C
S. azureus ATCC 14921 TsrA Thiostrepton
S. lividans tipA Thiostrepton
S. lividans afsB Prodigiosin
1 DMSO?**3%7 S. hygroscopicus aroA, fkbN and luxR Ascomycin
S. glaucescens temKLM Tetracenomycin C
S. venezuelae ISP5230 Jad, JadR1, JadR2 Jadomycin B
2 Ethano]?23%7 S. hygroscopicus Val-A, AfsR, GInR Validamycin
S. coelicolor act Actinorhodin
S. diastatochromogenes toyF and toyG Toyocamycin
SD3145
S. antibioticus and S. acmA or acmB Actinomycin D
Scandium (Sc3+)?0:41,66:67 parvulus
3 S. griseus strB1, strD and strF Streptomycin
S. lividans actll-ORF4 Actinorhodin
4 Scandium and S. coelicolor A3 actll-ORF4 Actinorhodin
Lanthanum?3>*
5 Sodium butyrate*6-3° S. coelicolor actlI-ORF4 Actinorhodin
6 Dimethyl sulphone®® S. venezuelae ATCC 10712 sven(929 Chloramphenicol
S. coelicolor AfsK AfsR AfsS Actinorhodin
S. coelicolor RpsL And rpoB Germicidin
S. griseorubiginosus rpoB Promomycin,
Salinomycin,
7 Antibiotic remodeling Monensin,
complex (ARC)%19-5464 Nigericin
S. avermitilis Frr Avermectin

Activation mechanism of DMSO: Dimethyl sulfoxide
(DMSO) is a ubiquitous organic solvent that is extensively
utilized as an elicitor in various biochemical and cellular
investigations, particularly within drug development
programs. It possesses several advantageous characteristics
including its small molecular size, polar nature and ability to
dissolve in polar and nonpolar solvents. These properties
contribute to the exceptional cell permeability exhibited by
DMSO. The remarkable ability of DMSO to readily diffuse
across cell membranes enables efficient penetration into
cells*.

The "DMSO effect" refers to the observed enhancement in
the production of wvarious antibiotics including
chloramphenicol in S. venezuelae ATCC 10712,
tetracenomycin C in S. glaucescens, prodigiosin in S.
lividans, ascomycin in S. hygroscopicus and thiostrepton in
S. aureus ATCC 14921 when DMSO is present at varying
concentrations®2. The underlying mechanisms involve the
modulation of specific metabolic pathways such as the
pentose phosphate pathway (PPP), glycolysis and amino
acid metabolism. In particular, DMSO has been found to
elevate PPP activity in certain cellular contexts, leading to
higher NADPH production and enhanced ribose-5-
phosphate generation for nucleotide biosynthesis®. This
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upregulation of PPP serves a protective role by facilitating
increased NADPH availability which helps to counteract
oxidative stress within cells.

These metabolic pathways have been identified as major
contributors to antibiotic production processes. Notably,
DMSO influences carbon flow by diverting it away from
pyruvate within the tricarboxylic acid (TCA) cycle and
pyruvate metabolism. The transcriptional response triggered
by DMSO appears to have pleiotropic effects or a
widespread impact across multiple cellular processes.
Furthermore, DMSO modifies metabolic fluxes towards
primary metabolism pathways such as the pentose phosphate
pathway, glycolysis and TCA cycle, as shown in figure 2.
This redirection provides an increased supply of precursors
necessary for optimal antibiotic synthesis.

Upon the addition of the DMSO solution to fermentation
media, Streptomyces sp. strains exhibited enhanced
production of various metabolites belonging to different
biosynthetic families. For instance, S. venezuelae ATCC
10712  demonstrated a three-fold increase in
chloramphenicol synthesis by activating the cryptic cml
gene®. It has been proposed that JadR1 acts as a repressor
for the chloramphenicol biosynthetic pathway by binding to
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promoter regions of structural genes associated with its
production. Through comparative genome analysis, seven
previously unidentified structural genes (sven0909 to
sven0915) were discovered adjacent to the known
chloramphenicol biosynthetic gene cluster in S. venezuelae
strain ATCC 10712, which was absent in closely related
Streptomyces strains unable to produce chloramphenicol
(sven0916-sven0928)*L.

Notably, no cluster-situated regulator specific to the
chloramphenicol biosynthetic gene (cml) cluster was found.
To investigate the particular interactions between JadR1 and
the cmlJ promoter region, researchers identified the
transcription start point of cmlJ located at 439 nucleotides
upstream from its putative start codon. Subsequent analyses
revealed that downstream regions ranging from nucleotides
186-335 became protected by JadR1 upon binding. This
prompted further investigations into whether JadR2 also
plays a role in regulating chloramphenicol biosynthesis. To
ascertain if JadR1 directly inhibits chloramphenicol
production, band shift tests were conducted using each
possible promoter region within the chloramphenicol
biosynthetic gene cluster as targets for JadR1 binding
assays. Interestingly, it was found that JadR1 binds
specifically to the intergenic region between cmll and
cmlJ®, an area previously established as essential for
chloramphenicol biosynthesis. These findings confirm that
JadR1 directly governs the translation of cml genes involved
in chloramphenicol biosynthesis represented in figure 3.

Activation mechanism of ethanol: Ethanol, a potent
elicitor of secondary metabolite, exerts significant effects on
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various cellular processes in Streptomyces species. Its
molecular properties, including size, polarity and chemical
composition, enable it to readily permeate plasma
membranes via passive diffusion. This high permeability
allows ethanol to exert a "pull" effect on antibiotic
production by influencing steady-state growth, cryptic gene
expression, carbon metabolism and membrane structure. In
the context of antibiotic biosynthesis induction, ethanol
demonstrates preferential promotion of pathway-specific
transcriptional regulation and activation of oxidative stress
mechanisms. These selective modulations contribute to the
enhancement of secondary metabolite synthesis upon
exposure to ethanol stimulation. For instance, ethanol
significantly enhances the synthesis of tetracenomycin C by
S. glaucescens through activation of the cryptic ttmKLM
genes8’s,

Similarly, ethanol supplementation in D-galactose-L-
isoleucine fermentation media increases jadomycin B
production by S. venezuelae ISP5230, a pigmented
benzoxazole phenanthridine antibiotic. The mechanism
behind this enhancement involves potentially triggering a
heat shock response or modification in membrane
permeability caused by ethanol exposure in S. venezuelae
ISP5230. These effects are believed to influence the activity
of cryptic genes such as JadJ, JadR1 and JadR2%. Studies
have shown that JadR2 acts as a repressor within the
jadomycin biosynthetic gene cluster®, while JadR1 is an
essential activator for jadomycin B biosynthesis located
nearby but divergent from jadR2.

Fig. 2: Overview steps followed by DMSO
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When Jodamycin B production occurs under ethanol
exposure, synthesis becomes independent of ethanol stress
when JadR2 is disrupted’™. Band shift tests using JadR2
were conducted with all possible promoter sites within the
Jodamycin biosynthetic gene cluster. The results suggest
that repetitive sequences in promoter regions inhibit RNA
polymerase binding at the jadR1 promoter site by JadR2.
This inhibition prevents the activation of Jodamycin
biosynthesis mediated by JadR1 through a dependent
mechanism involving interaction between these two
proteins.

Furthermore, it has been observed that Jodamycin B causes
dissociation of JadR1 from its target protein by binding to
the N-terminal receiver domain of JadR1. Additionally, a
genuine butyrolactone receptor called JadR3 is modulated
by butyrolactone SVBL, influencing DNA binding and
leading to stimulation of JadR1 transcription while
suppressing the transcription of JadR27. These findings
highlight autoregulatory mechanisms involved in controlling
Jodamycin B production, where high expression levels of
biosynthetic enzyme genes result in product accumulation,
reaching concentrations that inhibit initial activation shown
in figure 4. Therefore, ethanol exposure influences the
secondary metabolite synthesis of jadomycin B by activating
or suppressing specific cryptic genes. Understanding these
regulatory mechanisms and autoregulatory processes
provides valuable insights into optimizing antibiotic
production strategies using microbial sources.

Activation mechanism of scandium: Scandium (Sc¢3*) has

been demonstrated to act as an elicitor, stimulating the
production of diverse secondary metabolites in Streptomyces
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including antibiotics, anticancer drugs and
immunosuppressants. Despite the lack of understanding
regarding the molecular mechanism behind scandium's
action, it is believed that Sc3* ions interact with regulatory
proteins or DNA, leading to changes in gene expression
profiles*:. The effectiveness of scandium as an elicitor
depends on factors such as the metal ion's concentration, the
culture's growth phase and the specific strain of
Streptomyces being studied. Overcoming these challenges is
crucial for maximizing secondary metabolite production
using scandium®?. In the case of actinorhodin production by
S coelicolor A3 (Act), it was found that adding scandium
significantly increased antibiotic synthesis compared to
control sets.

The presence of scandium led to elevated levels of
transcripts associated with actll-ORF4, a key regulator
involved in antibiotic biosynthesis as shown in figure 5. This
transcriptional activation is essential for successfully
expressing Actinorhodin biosynthetic structural genes. The
act cluster encompasses the Actll-ORF4 determinant, which
acts as a major controlling factor for actinorhodin
synthesis!'?7. Multiple known regulatory proteins play both
positive and negative roles, directly targeting the promoter
region containing actll-ORF4. These include AdpA (a
pleiotropic regulator)®®, LexA (a global DNA damage
response regulator)®®, AbsA2 (a global repressor)®7°, DasR
(mediator responding to N-acetylglucosaminge)®, DraR and
AfsQ1 (activators responding to nitrogen excess)’>’7, AtrA
(transcriptional ~ activator  linked  with  acetyl-CoA
metabolism) and ROK7B7 (SCO6008) binding targets
related to xylose operon repression®2,
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Unraveling the complex regulatory network involving these
regulators binding at different or overlapping locations is an
ongoing challenge. Additionally, actll-ORF4 mRNA
contains a rare codon (UUA) and its translation relies on a
developmentally relevant tRNA encoded by the bldA gene.
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Further exploration of scandium's effects and elucidation of
the underlying molecular interactions will provide valuable
insights for optimizing secondary metabolite production in
Streptomyces species
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Application of chemical elicitors in Streptomyces for
enhancing secondary metabolite production: The use of
elicitors can greatly benefit industries such as industrial
biotechnology, pharmaceuticals and agriculture*®. Chemical
elicitors are small exogenous molecules that can trigger the
membrane-specific receptors of the metabolic pathway,
induce or can enhance the production of secondary
metabolites, can modify the microbes, or can influence the
interaction of the microbes with their environment®,
Chemical elicitors have been used in microbiology since the
1980s to increase antibiotic synthesis and to find new
secondary metabolites. For example, in the 1980s,
investigations found that adding sodium butyrate or valproic
acid to Streptomyces cultures boosted antibiotic synthesis by
modifying gene expression or metabolic pathways.

In the 2000s, elicitors such as DMSO were employed to
increase the production of cryptic compounds such as
coelimycin P1, revealing previously unknown biosynthetic
potential. This technique remains a cornerstone in drug
discovery and microbial biotechnology?®®. Elicitor triggers
act via various mechanisms including the activation of signal
transaction pathways, the triggering of stress response and
the modulation of metabolic processes*. For example,
elicitors such as jasmonic acid and salicylic acid, which are
originally plant hormones, can mimic signals in
microorganisms, leading to the activation of biosynthetic
pathways for the production of secondary metabolite®” and
some elicitors like lincomycin at a sub-inhibitory
concentration resulted in an elevated expression of the CSR
activator gene actll-ORF4 and therefore increased (ACT)
actinorhodin metabolite overproduction in S. coelicolor3*,

Elicitors promote the formation of secondary metabolites
through complex interaction at microbes' molecular, cellular
and physiological levels. This interaction often involves
signaling pathways, transcriptional regulation and metabolic
changes ultimately leading to increased production of
desired metabolites®®.

Signal transduction pathways activation in Streptomyces
- Mechanism and Implications: Streptomyces, a Gram-
positive bacterial species known for its complex life cycle
and subsequent generations of secondary metabolites, relies
heavily on receptor-mediated signaling and calcium
signaling to respond to external stimuli. Elicitors are
chemical compounds that activate these signaling pathways,
leading to various physiological responses including the
production of secondary metabolites. Understanding how
elicitors act in receptor-mediated signaling in Streptomyces
is critical for application in biotechnology, particularly for
increasing the production of drugs and other useful
chemicals.

In receptor-mediated signal transactions, specialized
receptors recognize the triggers which are often membrane-
bound proteins which are outer domains that interact with
signaling molecules®. Streptomyces contains numerous
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types of receptors including histidine kinases®¢, G protein-
coupled receptors (GPCRs)* and receptor-like kinases®.
These receptors recognize various triggers and activate
downstream signaling pathways. When the receptor binds to
a trigger, it undergoes a structural change that enables signal
transduction across the membrane. This process usually
requires phosphorylation of the receptor or related
proteins®’. Two-component systems are common in
Streptomyces®. The phosphorylated receptor (histidine
kinase) transfers the phosphate group to a reaction regulator.
The reaction regulator then controls the target genes'
expression in secondary metabolite and other cellular
processes.

Signal transmission often leads to the formation of
secondary messengers such as cyclic AMP (cCAMP), cyclic
di-GMP and other smaller molecules. This messenger
spreads the signal throughout the cell and amplifies the
cellular responses. For example, cyclic AMP can activate
CAMP-dependant protein kinases which subsequently
phosphorylate other proteins involved in gene expression
such as transcription factors controlling secondary
metabolite formation receptor-mediated signaling resulting
in gene expression regulation32. Streptomyces frequently
activates genes responsible for manufacturing secondary
metabolites such as antibiotics, antifungal and anticancer
drugs®.

In calcium-mediated signaling, binding of the elicitor can
trigger cell surface receptors that can cause an influx of
calcium ions (Ca*?) into the cells. Increased intracellular
Ca*? levels are secondary messengers that transmit the signal
throughout the cell. This often leads to the activation of
calcium-dependent protein kinases which then stimulate
transcription factors that stimulate genes involved in
producing secondary metabolites®.

Transcriptional Regulation: Elicitors can stimulate the
expression of genes encoding molecules involved in
producing secondary metabolites. In Streptomyces species,
elicitors can increase the expression of polyketide synthase
(PKS) and non-ribosomal peptide synthetase (NRPS) gene
clusters™. Elicitors can modulate the activity of these global
regulators, leading to an increased expression of PKS and
NRPS genes such as AdpA, AtrA, or DasR which control the
expression of numerous genes®’. Elicitor-induced signals
lead to the activation of two-component systems (TCS) or
other regulatory proteins that can directly or indirectly
enhance the expression of PKS and NRPS gene clusters
including those involved in secondary metabolism?8,
Elicitors can modulate the activity of these global regulators,
leading to an increased expression of PKS and NRPS genes.

Induction of Stress Responses: Many chemical elicitors
including heavy metal ions like copper (Cu?*) or cobalt
(Co?"), induce oxidative stress within microbial cells*. This
stress leads to generating reactive oxygen species (ROS),
serving as signaling molecules that can activate secondary
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metabolic pathways*°. Whenever oxidative stress occurs, the
accumulation of ROS can lead to a physiological response
involving the activation of various transcription factors and
signaling pathways’. These pathways often promote the
upregulation of genes involved in secondary metabolism?,
In Streptomyces coelicolor, for example, ROS produced
under oxidative stress can stimulate gene expression in
producing pigmented antibiotics like actinorhodin®?.
Activating this metabolic pathway is a defense strategy that
enables the organism to produce secondary metabolites that
can hinder competitors or are neutralize the effects of
oxidative stress.

ROS activates secondary metabolite formation in
Streptomyces through various regulatory proteins and
pathways. SoxR, a redox-sensitive transcription factor,
responds to intracellular redox changes. SoxR undergoes a
conformational change when oxidized by ROS. This allows
it to bind DNA and to stimulate the expression of genes
involved in secondary metabolites like y-actinorhodin®3.

In S. clavuligerus, ROS can also influence the function of
the alternative sigma factor such as RpoE and two-
component regulators control the transcription of genes cutS
and cutR, encoding biosynthetic enzymes for holomycin
secondary metabolites**. Oxidative stress can also affect
global regulatory proteins such as BIdA (a leucyl-tRNA
synthetase that controls the expression of several secondary
metabolite pathways) and increases the production of
actinorhodin and prodiginine of secondary metabolites®.

Epigenetic Modifications: Certain elicitor triggers lead to
epigenetic changes including DNA methylation or histone
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modification which alter the accessibility of DNA to the
transcription machinery. Epigenetic modifications can
activate previously silent or cryptic expressed secondary
metabolite gene clusters, leading to the synthesis of new or
higher levels of secondary metabolites?. In a recent study,
epigenetic modification is a key tool for secondary
metabolite production in microorganisms*?.

Conclusion

Advances in genome sequencing have transformed the
discovery of natural products by revealing the hidden
metabolic potential of microorganisms, with genome mining
playing a crucial role in linking biosynthetic gene clusters to
their metabolites. This has enabled the prioritization of
microbial strains with novel synthetic capabilities while
minimizing the rediscovery of natural products. Despite
these advances, the activation of silent gene clusters remains
a major problem, mainly due to the lack of knowledge of the
regulatory mechanisms controlling secondary metabolic
pathways. This study focuses on elicitor-based techniques as
promising tools for enhancing secondary metabolite
production in Streptomyces and demonstrates their diverse
applicability in uncovering obscure biosynthetic pathways.

Combining these tactics with cutting-edge technologies such
as omics, synthetic biology and machine intelligence holds
great promise for overcoming these obstacles. By
deciphering the intricate regulatory networks of secondary
metabolism and building high-throughput systems to
optimize triggers, the field can tap the full metabolic
capacities of microbes and pave the way for breakthroughs
in medicine, agriculture and sustainable bioproduction.
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Fig. 6: Pathways followed by secondary metabolite production
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